Visual Salience Learning via Low Rank Matrix Recovery

نویسندگان

  • Junxia Li
  • Jundi Ding
  • Jian Yang
چکیده

Detection of salient object regions is useful for many vision tasks. Recently, a variety of saliency detection models have been proposed. They often behave differently over an individual image, and these saliency detection results often complement each other. To make full use of the advantages of the existing saliency detection methods, in this paper, we propose a salience learning model which combines various saliency detection methods such that the aggregation result outperforms each individual one. In our model, we first obtain several saliency maps by different saliency detection methods. The background regions of each saliency map usually lie in a low-dimensional subspace as most of them tend to have lower salience values, while the object regions that deviating from this subspace can be considered as sparse noises. So, an individual saliency map can be represented as a low rank matrix plus a sparse matrix. We aim at learning a unified sparse matrix that represents the salient regions using these obtained individual saliency maps. The sparse matrix can be inferred by conducting low rank matrix recovery using the robust principal component analysis technique. Experiments show that our model consistently outperforms each individual saliency detection approach and state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-One Matrix Completion with Automatic Rank Estimation via L1-Norm Regularization

Completing a matrix from a small subset of its entries, i.e., matrix completion, is a challenging problem arising from many real-world applications, such as machine learning and computer vision. One popular approach to solving the matrix completion problem is based on low-rank decomposition/factorization. Low-rank matrix decomposition-based methods often require a pre-specified rank, which is d...

متن کامل

Joint Capped Norms Minimization for Robust Matrix Recovery

The low-rank matrix recovery is an important machine learning research topic with various scientific applications. Most existing low-rank matrix recovery methods relax the rank minimization problem via the trace norm minimization. However, such a relaxation makes the solution seriously deviate from the original one. Meanwhile, most matrix recovery methods minimize the squared prediction errors ...

متن کامل

Low-rank matrix recovery via rank one tight frame measurements

The task of reconstructing a low rank matrix from incomplete linear measurements arises in areas such as machine learning, quantum state tomography and in the phase retrieval problem. In this note, we study the particular setup that the measurements are taken with respect to rank one matrices constructed from the elements of a random tight frame. We consider a convex optimization approach and s...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Necessary and Sufficient Null Space Condition for Nuclear Norm Minimization in Low-Rank Matrix Recovery

Low-rank matrix recovery has found many applications in science and engineering such as machine learning, signal processing, collaborative filtering, system identification, and Euclidean embedding. But the low-rank matrix recovery problem is an NP hard problem and thus challenging. A commonly used heuristic approach is the nuclear norm minimization. In [12,14,15], the authors established the ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014